Word Equations Where a Power Equals a Product of Powers

نویسنده

  • Aleksi Saarela
چکیده

We solve a long-standing open problem on word equations by proving that if the words x0, . . . , xn satisfy the equation x0 = x1 · · ·xn for three positive values of k, then the words commute. One of our methods is to assign numerical values for the letters, and then study the sums of the letters of words and their prefixes. We also give a geometric interpretation of our methods. 1998 ACM Subject Classification G.2.1 Combinatorics, F.4.3 Formal Languages

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On group equations

 Suppose $f$ is a map from a non-empty finite set $X$ to a finite group $G$. Define the map $zeta^f_G: Glongrightarrow mathbb{N}cup {0}$ by $gmapsto |f^{-1}(g)|$. In this article, we show that for a suitable choice of $f$, the map $zeta^f_G$ is a character. We use our results to show that the solution function for the word equation $w(t_1,t_2,dots,t_n)=g$ ($gin G$) is a character, where $w(t_1,...

متن کامل

ar X iv : m at h / 02 09 39 9 v 1 [ m at h . R A ] 2 9 Se p 20 02 SYMMETRIC WORD EQUATIONS IN TWO POSITIVE DEFINITE LETTERS

A generalized word in two positive definite matrices A and B is a finite product of nonzero real powers of A and B. Symmetric words in positive definite A and B are positive definite, and so for fixed B, we can view a symmetric word, S(A, B), as a map from the set of positive definite matrices into itself. Given positive definite P , B, and a symmetric word, S(A, B), with positive powers of A, ...

متن کامل

Optimal Power Flow Algorithms

The ordinary power flow or load flow problem is stated by specifying the loads in megawatts and megavars to be supplied at certain nodes or busbars of a transmission system and by the generated powers and the voltage magnitudes at the remaining nodes of this system together with a complete topological description of the system including its impedances. The objective is to determine the complex ...

متن کامل

The Pseudo-smarandache Function

The Pseudo-Smarandache Function is part of number theory. The function comes from the Smarandache Function. The Pseudo-Smarandache Function is represented by Z(n) where n represents any natural number. The value for a given Z(n) is the smallest integer such that 1+2+3+ . . . + Z(n) is divisible by n. Within the Pseudo-Smarandache Function, there are several formulas which make it easier to find...

متن کامل

On Powers of Some Graph Operations

Let $G*H$ be the product $*$ of $G$ and $H$. In this paper we determine the rth power of the graph $G*H$ in terms of $G^r, H^r$ and $G^r*H^r$, when $*$ is the join, Cartesian, symmetric difference, disjunctive, composition, skew and corona product. Then we solve the equation $(G*H)^r=G^r*H^r$. We also compute the Wiener index and Wiener polarity index of the skew product.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017